Improved Particle Swarm Optimizer with Dynamically Adjusted Search Space and Velocity Limits for Global Optimization

نویسندگان

  • Aderemi Oluyinka Adewumi
  • Akugbe Martins Arasomwan
چکیده

This paper presents an improved particle swarm optimization (PSO) technique for global optimization. Many variants of the technique have been proposed in literature. However, two major things characterize many of these variants namely, static search space and velocity limits, which bound their flexibilities in obtaining optimal solutions for many optimization problems. Furthermore, the problem of premature convergence persists in many variants despite the introduction of additional parameters such as inertia weight and extra computation ability. This paper proposes an improved PSO algorithm without inertia weight. The proposed algorithm dynamically adjusts the search space and velocity limits for the swarm in each iteration by picking the highest and lowest values among all the dimensions of the particles, calculates their absolute values and then uses the higher of the two values to define a new search range and velocity limits for next iteration. The efficiency and performance of the proposed algorithm was shown using popular benchmark global optimization problems with low and high dimensions. Results obtained demonstrate better convergence speed and precision, stability, robustness with better global search ability when compared with six recent variants of the original algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

A Hybrid Particle Swarm and Ant Colony Optimization for Design of Truss Structures

This paper presents a particle swarm ant colony optimization for design of truss structures. The algorithm is based on the particle swarm optimizer with passive congregation and ant colony optimization. The particle swarm ant colony optimization applies the particle swarm optimizer with passive congregation for global optimization and ant colony approach is employed to update positions of parti...

متن کامل

A Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network

Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...

متن کامل

Multi-Species Particle Swarm Optimizer for Multimodal Function Optimization

This paper introduces a modified particle swarm optimizer (PSO) called the Multi-Species Particle Swarm Optimizer (MSPSO) for locating all the global minima of multimodal functions. MSPSO extend the original PSO by dividing the particle swarm spatially into a multiple cluster called a species in a multi-dimensional search space. Each species explores a different area of the search space and tri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International Journal on Artificial Intelligence Tools

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2015